A Root Locus Property of the Extended Bass Algorithm

Ernest S. Armstrong*

NASA Langley Research Center, Hampton, Va.

ANY aircraft stability and control problems may be formulated and solved through use of an *n*th order time-invariant vector equation

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

with state vector x and control variable u. In the process of finding acceptable feedback control laws of the form

$$u(t) = Kx(t) \tag{2}$$

it is often required to find a constant gain matrix K such that the closed-loop response matrix A + BK is asymptotically stable. That is, the eigenvalues of A + BK lie strictly in the complex left-half plane. One easy-to-implement stabilization algorithm is stated in the following theorem.

Theorem 1 - Extended Bass Algorithm

Let [A,B] be stabilizable. Then

$$K = -B'Z^+ \tag{3}$$

stabilizes the system (1) where $Z = Z' \ge 0$ satisfies

$$-(A + \beta I)Z + Z[-(A + \beta I)]' = -2BB'$$
 (4)

with $\beta > 0$ chosen such that the eigenvalues of $-(A + \beta I)$ are in the complex left-half-plane. The symbols $(\cdot)^+$ and $(\cdot)'$ denote matrix pseudoinverse and transpose, respectively.

A proof of Theorem 1 can be found in Ref. 1. The algorithm is an extension of a well-known method of Bass² for stabilizing single-input completely controllable systems to include multiple-input stabilizable systems. Shapiro and Decarli³ present a simple method for determining β in terms of the elements of the $n \times n$ matrix A. The purpose of this Note is to detail a result concerning the root locus properties of the matrix A + BK (for variations in β) which can also influence the choice of β in Eq. (4).

Theorem 2 - Root Locus Property

Let [A,B] be stabilizable and $\beta>0$ chosen such that the matrix $-(A+\beta I)$ is a stability matrix. Then the extended Bass algorithm (Theorem 1) yields a stabilizing gain K such that all eigenvalues λ of A+BK that coincide with controllable eigenvalues of A+BK satisfy

$$Re\lambda = -\beta$$
 (5)

Proof

Let v be a left eigenvector of A + BK with eigenvalue λ . That is,

$$(A + BK)'v = \lambda v \tag{6}$$

It follows from Ref. 1 that Eq. (4) can be written as

$$(A+BK)Z+Z(A+BK)'=-2\beta Z \tag{7}$$

Received May 19, 1977.

Index category: Handling Qualities, Stability and Control.

Multiplying Eq. (7) on the right by v and on the left by v^* , where $(\cdot)^*$ denotes conjugate transpose, gives

$$(Re\lambda + \beta)v^*Zv = 0 \tag{8}$$

Equation (8) holds for each eigenvalue/left-eigenvector pair of (A + BK). In order to distinguish between controllable and uncontrollable eigenvalues, partition the $(n \times 1)$ vector v as

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \tag{9}$$

where v_l is $\ell \times 1$, v_2 is $(n-\ell) \times 1$, and ℓ denotes the number of controllable modes of the [A,B] pair. Additionally, from Ref. 1, there exists an orthogonal matrix T such that

$$\tilde{Z} = \begin{bmatrix} \tilde{Z}_{11} & 0 \\ 0 & 0 \end{bmatrix} = TZT' \tag{10}$$

where \tilde{Z}_{II} is $\ell \times \ell$ and $\tilde{Z}_{II} = \tilde{Z}'_{II} > 0$. Letting

$$\tilde{v} = Tv = \begin{bmatrix} \tilde{v}_I \\ \tilde{v}_2 \end{bmatrix} \tag{11}$$

with partitioning consistent with Eq. (9) gives

$$v^* Z v = \tilde{v}_I^* \tilde{Z}_{II} \tilde{v}_I \tag{12}$$

and Eq. (8) becomes

$$(Re\lambda + \beta)\tilde{v}_I * \tilde{Z}_I \tilde{v}_I = 0 \tag{13}$$

If λ is a controllable eigenvalue or an uncontrollable eigenvalue coinciding with one that is controllable, the vector \tilde{v}_i is a nonzero left eigenvector of the controllable part of T(A+BK) T'. The definiteness of \tilde{Z}_{IJ} then gives

$$Re\lambda + \beta = 0 \tag{14}$$

from Eq. (13). For λ an uncontrollable eigenvalue not coinciding with one that is controllable, it can be shown that $\tilde{v}_1 = 0$, which completes the proof.

Theorem 2 establishes that the controllable eigenvalues of A + BK have degree of stability exactly β . Additional properties observed from numerical experience with the extended Bass algorithm and a discrete variable analog of the extended Bass method⁴ can be found in Ref. 5.

References

¹ Armstrong, E. S., "An Extension of Bass' Algorithm for Stabilizing Linear Constant Systems," *IEEE Transactions on Automatic Control*, Vol. AC-20, Feb. 1975, pp. 153-154.

² Bass, R. W., "Lecture Notes on Control Synthesis and Op-

²Bass, R. W., "Lecture Notes on Control Synthesis and Optimization," presented at NASA Langley Research Center, Hampton, Va., Aug. 21-Sept. 1, 1961.

³Shapiro, E. Y. and Decarli, H. E., "A Practical Aspect of Bass' Algorithm for Stabilizing Linear-Time-Invariant Systems," AIAA Journal, Vol. 14, Nov. 1976, p. 1630.

⁴Armstrong, E. S. and Rublein, G. T., "A Stabilization Algorithm for Linear Discrete Constant Systems," *IEEE Transactions on Automatic Control*, Vol. AC-21, Aug. 1976, pp. 629-631.

⁵ Armstrong, E. S. and Rublein, G. T., "A Discrete Analog of the Extended Bass Algorithm for Stabilizing Constant Linear Systems," *Proceedings of the 1976 IEEE Conference on Decision and Control*, Clearwater Beach, Fla., Dec. 1976, pp. 1129-1131.

^{*}Aero-Space Technologist, Flight Dynamics and Control Division.